Cálculo Numérico I

Curso 2014-2015

Lista 5

 1° DE MAT./ 2° DE D.G.

- 1) Se considera la fórmula de cuadratura $I(f) = w_0 f(-\alpha) + w_1 f(\alpha)$ para aproximar la integral $\int_{-1}^{1} f(x) dx$, donde $\alpha \in (0, 1]$.
- a) Demostrar que es exacta para polinomios de grado menor o igual que 1 sii $w_0 = w_1 = 1$, independientemente del valor de α .
- b) Demostrar que si se quiere que, además, sea exacta para polinomios de grado menor o igual que 2 entonces existe un único valor de α que lo cumple. Encontrar ese α y demostrar que, con ese α , también es exacta para polinomios de grado menor o igual que 3.
- 2) Para aproximar $\int_{-1}^{1} f(x) dx$ se considera la fórmula de cuadratura

$$I(f) = w (f(x_1) + f(x_2) + f(x_3))$$

Encontrar w, x_1, x_2, x_3 para que sea exacta para polinomios de grado menor o igual que 3.

3) La regla del punto medio $M(f) = f(\frac{b+a}{2})(b-a)$ aproxima $\int_a^b f(x)dx$ con un error $E=f''(\xi)\frac{(b-a)^3}{24}$, para un cierto $\xi\in(a,b)$. Encontrar la regla compuesta del punto medio y una estimación del error como aproxi-

mación de $\int_a^b f(x)dx$.

- **4)** Para las funciones **(i)** $f(x) = x \sin(x)$, **(ii)** $f(x) = xe^{-x^2}$:
- a) Utilizar las reglas simples del punto medio, del trapecio y de Simpson para aproximar el valor de $\int_0^1 f(x) dx$.
- b) Calcular la precisión que tendrá cada resultado según la correspondiente estimación teórica del error.
- c) Calcular cada una de las integrales por medio de su primitiva y explicar cualquier discrepancia significativa que se observe.
- d) Calcular el valor de cada una de las integrales con una precisión de $5 \cdot 10^{-6}$ utilizando las reglas compuestas del punto medio, del trapecio y de Simpson.
- 5) La regla de integración de Lobatto aproxima $\int_{-1}^{1} f(x) dx$ mediante

$$L_n(f) = p_1 f(-1) + p_2 f(1) + \sum_{k=1}^{n} w_k f(x_k)$$

donde los pesos $p_1, p_2, w_1, \cdots w_n$ y los nodos $x_1, \cdots x_n$ se calculan imponiendo que integre de manera exacta todos los polinomios de grado menor o igual que 2n + 1.

- a) Escribir el sistema cuya solución son estos pesos y estos nodos.
- **b)** Encontrar los valores de los pesos y los nodos para n=2 y aproximar $\int_0^{\pi/2} (\sin(x))^{1/3} dx$ mediante $L_2(f)$.
- **6)** Se consideran las integrales $\int_0^{\pi/2} \cos x dx$, $\int_0^1 e^{-x^2} dx$ y $\int_0^{\sqrt{\pi}} \cos x^2 dx$.
- a) Usar la fórmula del error en la regla compuesta del trapecio para determinar el número de nodos que para calcular esas integrales con un error menor que 10^{-6} .
- b) Hacer lo mismo para la regla de Simpson.

- 7) El valor de la integral $\int_{-\pi/2}^{\pi/2} \sin(x) e^x dx$ es $\frac{e^{\pi/2} + e^{-\pi/2}}{2} = 2.50917...$
- a) Usar la regla de Simpson para encontrar un valor aproximado.
- b) Usar la regla del punto medio compuesta, con dos subintervalos, para encontrar un valor aproximado.
- c) Calcular las cotas de error teóricas, en ambos casos, y comparar con el error real.
- 8) Se considera la regla de cuadratura $Q(f) = \frac{1}{2}(f(x_0) + f(x_1))$ para aproximar la integral $\int_{-1/2}^{1/2} f(x) dx$.
- a) Encontrar los nodos x_0 y x_1 para que sea exacta de orden 3.
- b) Usarla para aproximar la integral $\int_{-\pi/2}^{\pi/2} \sin(x) e^x dx$ y estimar el error que se comete. Observación: el intervalo de integración es **diferente**.
- 9) Se considera la fórmula de integración de Newton-Cotes sobre un intervalo I con los puntos x_0, \ldots, x_n simétricos respecto del centro c de este intervalo, es decir, $\frac{x_k + x_{n-k}}{2} = c$.
- a) Demostrar que los pesos satisfacen $w_k = w_{n-k}, k = 0, 1, \dots n$.
- **b)** Deducir que, si n es par, la fórmula de Newton-Cotes es exacta para todo polinomio de grado menor o igual que n + 1.